Bible PhysicsEpinastyPlant Senescence TheoryScripture EvolutionSocrates/Plato Civilization Cycle ▪ Speculations of Why Sexes Exist ▪

1986 Version 1995 Version 1999 Version 2003 Version 2007 Version a 2007 Version b Current Version

Numbered References

  1. Lecoq, C., Koukkari, W. L., and Brenner, M. L. Rhythmic changes in Abscisic Acid (ABA) content of soybean leaves. Plant Physiology, 1983, 72 (suppl.): Pages 52. 

  2. Zhang, J., U. Schurr, and W.J. Davies, Control of Stomatal Behaviour by Abscisic Acid which Apparently Originates in the Roots. Journal of Experimental Botany, 1987, 38(7): Pages 1174.

  3. Wain, R. L. Some development in research on plant growth inhibitors. Proc. Roy, Soc. B., 1975, 191: Pages 335-352. 

  4. N. L. Biddington and A. S. Dearman, The effect of abscisic acid on root and shoot growth of cauliflower plants, Plant Growth Regulation, 1982, Volume 1, Number 1/March: Pages 15-24.

  5. Peter M. Chandler and Masumi Robertson, Gene Expression Regulated by Abscisic Acid and its Relation to Stress Tolerance, Annual Review of Plant Physiology and Plant Molecular Biology, 1994. 45: Pages 113-141.

  6. A. J. Robertson, M. Ishikawa, L. V. Gusta and S. L. MacKenzie, Abscisic Acid-Induced Heat Tolerance in Bromus inermis Leyss Cell-Suspension Cultures (Heat-Stable, Abscisic Acid-Responsive Polypeptides in Combination with Sucrose Confer Enhanced Thermostability), Plant Physiology, 1994, Vol 105, Issue 1: Pages 181-190.

  7. Shinozaki, K. and Yamaguchu-Shinozaki, K., Molecular responses to drought and cold stress. Curr. Opin. Biotechnol., 1996, 7: Pages 161–167.

  8. J. A. Miernyk, Abscisic Acid Inhibition of Kinetin Nucleotide Formation in Germinating Lettuce Seeds, Physiologia Plantarum, 1979, Volume 45, Issue 1: Pages 63 - 66.


  10. Feurtado, J.; Ambrose, Stephen; Cutler, Adrian; Ross, Andrew; Abrams, Suzanne; Kermode, Allison, Dormancy termination of western white pine (Pinus monticola Dougl. Ex D. Don) seeds is associated with changes in abscisic acid metabolism. Journal Planta, Feb. 2004, Volume 218, Number 4: Pages 630-639.

  11. I. Biran, I. Gur, A. H. Halevy, The Relationship between Exogenous Growth Inhibitors and Endogenous Levels of Ethylene, and Tuberization of Dahlias. Physiologia Plantarum, 1992, Volume 27 Issue 2: Pages 226 - 230. 

  12. John W. Kimball, Kimball's Biology Pages, Abscisic acid (ABA), ©2008,

  13. Creelman RA and Mullet ME., Biosynthesis and action of jasmonsates in plants. Annual Review of Plant Physiology and Plant Molecular Biology. 1997, 48: Pages 355-381.

  14. Falkenstein E et al., Methyljasmonate and α-linolenic acid are potent inducers of tendril coiling. Planta, 1991, 185: Pages 316– 22.

  15. Creelman RA et al., Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc. Natl. Acad. Sci. USA, 1992, 89: Pages 4938– 41.

  16. Anderson JM., Jasmonic acid-dependent increases in the level of specific polypeptides in soybean suspension cultures and seedlings. Journal of Plant Growth and Regulation.  1988, 7: Pages 203– 11.

  17. Pelacho AM and Mingo-Castel AM., Jasmonic acid induces tuberization of potato stolons cultured in vitro. Plant Physiology, 1991. 97: Pages 1253–55.

  18. Xu Y et al., Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell, 1994, 6: Pages 1077– 85.

  19. Jörg Lehmann, Rainer Atzorn, Christian Brückner, Steffen Reinbothe, Jens Leopold, Claus Wasternack and Benno Parthier, Accumulation of jasmonate, abscisic acid, specific transcripts and proteins in osmotically stressed barley leaf segments. 1995, Volume 197, Number 1/August: Pages 156-162.

  20. Brown, A. W., Reeve, D. R., and Crozier, A., The effect of light on the Gibberellin metabolism and growth of Phaesolus coccineus seedlings. Planta 1975, 126: Pages 83-91.  

  21. M. A. C. Demeulemeester, W. Rademacher, A. Van de Mierop and M. P. De Proft, Influence of gibberellin biosynthesis inhibitors on stem elongation and floral initiation on in vitro chicory root explants under dark and light conditions. Plant Growth Regulation, 1995, Volume 17, Number 1/July: Pages 47-52.  

  22. Lockhardt, J. A., Studies on the Mechanism of Stem Growth Inhibition by Visible Radiation. Plant Physiol., 1959, 34: Pages 457-60.

  23. Brown, A. W., Reeve, D. R., and Crozier, A., The effect of light on the Gibberellin metabolism and growth of Phaesolus coccineus seedlings. Planta 1975, 126: Pages 83-91.

  24. John Hillman, The hormonal regulation of bud outgrowth in Phaseolus vulgaris. Planta, 1970, Volume 90, Number 3/September: Pages 222-229.

  25. Tsai F-Y.1; Lin C.C.1; Kao C.H., A comparative study of the effects of abscisic acid and methyl jasmonate on seedling growth of rice. Plant Growth Regulation, January 1997, Volume 21, Number 1, : Pages  37-42.

  26. Varner, J. E., GA-controlled synthesis of alpha-amylase in barley endosperm. Plant Physiology 1964, 39: Pages 412-415.

  27. Mitsuhashi-Kato, M., Mishibaoka, H., and Shimokoriyama, M., Anatomical and physiological aspects of developmental processes of adventitious root formation. Plant and Cell Physiology, 1978, 19: 393-400.

  28. D. N. Butcher and H. E. Street, The Effects of Gibberellins on the Growth of Excised Tomato Roots. Journal of Experimental Botany, 1960, Volume 11, Number 2: Pages 206-216.

  29. A. H. Halevy, Regulation Of Flowering In Flower Crops By Growth Substances, ISHS Acta Horticulturae 147: Symposium on Production Planning in Glasshouse Floriculture. -

  30. Vega, S.E., Palta, J.P., Bamberg, J.B. Root zone calcium can modulate GA induced tuberization signal [abstrat]. American Journal of Potato Research. 2006, 83: Pages 135.

  31. I. F. Golovatskaya and R. A. Karnachuk, Dynamics of growth and the content of endogenous phytohormones during kidney bean scoto-and photomorphogenesis. Russian Journal of Plant Physiology, May, 2007, Volume 54, Number 3, Pages407-413.

  32. Roni Aloni, Role of Auxin and Gibberellin in Differentiation of Primary Phloem Fibers. Plant Physiology, 1979, 63: Pages 609-614.

  33. Jutta Ludwig-Müller, Amy Vertocnik and Christopher D. Town, Analysis of indole-3-butyric acid-induced adventitious root formation on Arabidopsis stem segments. Journal of Experimental Botany 2005, 56(418): Pages 2095-2105.

  34. Sembdner, G., Gross, D., Liebisch, H. W., and Schneidner, G. Bio-synthesis and metabolism of plant hormones. Hormonal Regulation of Development 1, ed. J. MacMillen, Heidelberg: Springer Verlag, 1980.

  35. Keni Jiang and Lewis J. Feldman, Root Meristem Establishment and Maintenance: The Role of Auxin Journal of Plant Growth Regulation, 2003, Volume 21, Number 4/June: Pages 432-440.

  36. Jahardhan, K. V., Vasudeva, N., and Gopel, N. H. Diurnal variation of endogenous Auxin in arabica coffee leaves. J. Plant Crops, 1973, 1 (Suppl): Pages 93-95.

  37. Went F.W., and Thimann K.V. 1937. Phytohormones. (Macmillan: New York).

  38. AtPIN2 defines a locus of Arabidopsis for root gravitropism control.   The EMBO Journal, 1998, 17: Pages 6903–6911.

  39. Jacobs, W. P. Comparison of the movement and vascular differentiation effects of the endogenous Auxin and of phenoxyacetic weed killers in stems and petioles of Coleus and Phaesolus. Ann. N.Y. Acad. Sci., 1967, 144: Pages 102-117,

  40. Snow, R. Plagiotropism and correlative inhibition. New Phytologist, 1945, 44, Pages 110-117.

  41. Palmer, J. H., and Phillips, I. D. J. The effect of the terminal bud indole acetic acid and nitrogen supply on the growth and orientation of the petiole of the Helianthus. Annus. Physiol. Plant, 1963, 16: Pages 572-84.

  42. Rubinstein, B. and  A. C. Leopold, The Nature of Leaf Abscission. Quart. Rev. Biol, 1964,  39: Pages 356-72.

  43. Yoshio Masuda, Auxin-induced cell elongation and cell wall changes. Journal of Plant Research. September, 1990, Volume 103, Number 3, Pages 345-370.

  44. John W. Kimball, Kimball's Biology Pages, Auxin, ©2008, 

  45. T. J. Cooke, R. H. Racusen and J. D. Cohen, The Role of Auxin in Plant Embryogenesis. PLANT CELL 1993; 5; Pages 1494-1495

  46. Youfa Cheng, Yunde Zhao, A Role for Auxin in Flower Development. Journal of Integrative Plant Biology, 2007, Volume 49 Issue 1, Pages 99 - 104

  47. Raghavan, V. Some reflections on double fertilization, from its discovery to the present. New Phytol. 2003, 159: Pages 565–583.

  48. Cris Kuhlemeier, Therese Mandel, Soazig Guyomarc’h, Kath Bainbridge, Emmanuelle Bayer, Naomi Nakayama, Bernadette Guenot, Saiko Yoshida, Richard Smith, Institute of Plant Sciences, Universität Bern,,   last update:   April 17, 2007.

  49. Abeles, F. B., Holm, R. E., & Gahagan, H. E. Abscission: the role of aging. Plant Physiology 42, 1251-56, 1967.

  50. Chen R, Rosen E, Masson PH, Gravitropism in higher plants.  1999, Plant Physiol, 120: Pages 343-350.

  51. Plant Physiol, Shade Avoidance Responses. Driving Auxin along Lateral Routes. March 2000, Vol. 122: Pages 621-626

  52. John W. Kimball, Kimball's Biology Pages, Ethylene, ©2008,

  53. Burg, S. P., & Burg, E. A. The interaction between Auxin and Ethylene and its role in plant growth. 1966 PKAS 55:Pages 262-69.

  54. Soil Compaction. A Role for Ethylene in Regulating Leaf Expansion and Shoot Growth in Tomato?, Plant Physiol. 1999 December. 121(4): Pages 1227–1237.

  55. Kang, B. G. and Burg, S. P., Relation of Phytochrome-enhanced Geotropic Sensitivity to Ethylene Production. Plant Physiol. 1972, 50: Pages 132-135

  56. Kawase, M., Effects of flooding on Ethylene concentration in horticultural plants. 1972, J. Am. Soc. Hortic. Sci. 97: Pages 584-88.

  57. Esashi, Y; Leopold, AC. Dormancy Regulation in Subterranean Clover Seeds by Ethylene. 1969 Oct, Plant Physiol. 44(10):Pages 1470–1472.

  58. Jackson, M. B., 1 Campbell, D.J., Waterlogging and Petiole Epinasty In Tomato: The Role Of Ethylene And Low Oxygen. New Phytologist Volume 76 Issue 1: Pages 21 - 29.

  59. Visser, E. J. W. and Bögemann, G. M., Aerenchyma formation in the wetland plant Juncus effusus is independent of ethylene. 2006, New Phytologist Volume 171 Issue 2, Pages 305 - 314.

  60. Rakitin, V. Yu., Dolgikh, Yu. I. , Shaikina, E. Yu. and Kuznetsov, Vl. V., Oligosaccharide Inhibits Ethylene Synthesis and Stimulates Somatic Embryogenesis in a Cotton Cell Culture. Russian Journal of Plant Physiology, Volume 48, Number 5 / September, 2001: 628-632.

  61. Tanimoto, M., Roberts, K., and Dolan, L., Ethylene is a positive regulator of root hair development in Arabidopsis thaliana. 1995, Plant J. 8: Pages, 943–948.

  62. Visser, E., Summary of my PhD thesis titled 'Adventitious root formation in flooded plants'.

  63. Chacko, E.K., Kohli, R.R., Swamy, R.D.O.R.E. and Randhawa, G.S., Growth Regulators and Flowering In Juvenile Mango (Mangifera Indica L.) Seedlings. 1976. Acta Hort. (Ishs), 56: Pages 173-176.

  64. Vreugdenhil, D. and Van Dijk, W. Effects of ethylene on the tuberization of potato (Solanum tuberosum) cuttings. March, 1989, Plant Growth Regulation, Volume 8, Number 1: Pages 31-39.

  65. Adedipe, N. O., Hunt, L. A., & Fletcher, R. A. Effects of Benzyladenine on Photosynthesis growth and senescence of the bean plant. 1979, Phys. Plant. 25: Pages 151-53.

  66. Richmond AE, Lang A, Effect of kinetin on protein content and survival of detached Xanthium leaves. Science, 1957, 125: 650–651.

  67. Smart CM, Scofield SR, Bevan MW, Dyer TA, Delayed leaf senescence in tobacco plants transformed with tmr, a gene for cytokinin production in Agrobacterium. Plant Cell 1991, 3: 647–656. 

  68. Carsten Müssig, Ga-Hee Shin and Thomas Altmann, Brassinosteroids Promote Root Growth in Arabidopsis. Plant Physiol. 2003 November; 133(3): Pages 1261–1271. 

  69. Roddick/a JG, Ikekawa N, Modification of root and shoot development in monocotyledon and dicotyledon seedlings by 24-epibrassinolide. J Plant Physiol, 1992, 140: Pages 70–74.

  70. Schlagnhaufer, C. D., Arteca, R. N.  Inhibition of brassinosteroid-induced epinasty in tomato plants by aminooxyacetic acid and Co2+.  2006, Physiologia Plantarum, Volume 65 Issue 2: Pages 151 - 155.
  71. Rai et al., Journal of Experimental Botany, 1986, 37: 129-134.

  72. Barbara Manthe, Margot Schulz and Heide Schnabl, Effects of salicylic acid on growth and stomatal movements of Vicia faba L.: Evidence for salicylic acid metabolization. Journal of Chemical Ecology, September 1992, Volume 18, Number 9, Pages 1525-1539.

  73. Wang Y, Mopper S, Hasenstein KH, Effects of salinity on endogenous ABA, IAA, JA, AND SA in Iris hexagona. J Chem Ecol. Feb 2001, 27(2): Pages 327-42. 

  74. Stone E., An account of the success of the bark of the willow in the cure of agues.  Philosophical Transactions, 1764, 53: Pages 195-200.

  75. S. Hayat, A. Ahmad (2007). Salicylic acid - A Plant Hormone. Springer. ISBN 1402051832. 

  76. Y F. Huang1, C. T. Chen1 and C. H. Kao, Salicylic acid inhibits the biosynthesis of ethylene in detached rice leave. Plant Growth Regulation, January, 1993, Volume 12, Numbers 1-2: Pages 79-82.

  77. Xie Z, Zhang ZL, Hanzlik S, Cook E, Shen QJ, Salicylic acid inhibits gibberellin-induced alpha-amylase expression and seed germination via a pathway involving an abscisic-acid-inducible WRKY gene. Plant Mol Biol. 2007 Jun, 64(3): Pages 293-303.

  78. Dong Wang, Karolina Pajerowska-Mukhtar, Angela Hendrickson Culler and Xinnian Dong1, Salicylic Acid Inhibits Pathogen Growth in Plants through Repression of the Auxin Signaling Pathway. Cell Host & Microbe, 23 October 2007, Volume 17, Issue 20: Pages 1784-1790.

  79. Smith, Donald, L.; Prithiviraj, Balakrishnan; Zhou, Xiaomin; Khan, Wajahat; Salicyl Acid And Related Phenolic Compounds For Increasing Photosynthesis In Plants, World Intellectual Property Organization. 19.04.2001, (WO/2001/026464).

  80. S. D. Ray, GA, ABA, phenol interaction in the control of growth: Phenolic compounds as effective modulators of GA-ABA interaction in radish seedlings. Biologia Plantarum Publisher, Volume 28, Number 5 / September, 1986, Pages361-369

  81. K. Grossmann and T. Schmülling, The effects of the herbicide quinclorac on shoot growth in tomato is alleviated by inhibitors of ethylene biosynthesis and by the presence of an antisense construct to the 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene in transgenic plants. March, 1995, Volume 16, Number 2: Pages 183-188

  82. Tomáš Wernera, Václav Motykab, Valérie Laucouc, Rafaël Smetsd, Harry Van Onckelend and Thomas Schmülling, Cytokinin-Deficient Transgenic Arabidopsis Plants Show Multiple Developmental Alterations Indicating Opposite Functions of Cytokinins in the Regulation of Shoot and Root Meristem Activity. The Plant Cell, November 2003, Vol. 15: Pages 2532-2550.

  83. Fedor A. Brovko1,  Victoria S. Vasil'eva1,  Anna O. Shepelyakovskaya, Svetlana Yu. Selivankina,  Guzel R. Kudoyarova,  Alexander V. Nosov, Dmitry A. Moshkov,  Alexander G. Laman,  Khanafy M. Boziev, Victor V. Kusnetsov and  Olga N. Kulaeva, Cytokinin-binding protein (70 kDa): localization in tissues and cells of etiolated maize seedlings and its putative function. Journal of Experimental Botany Volume58, Issue10: Pages 2479-2490.

  84. László Bögre,1 Zoltán Magyar,1 and Enrique López-Juez, New clues to organ size control in plants. Genome Biol. 2008; 9(7): Page 226.  

  85. S. B. Boswelland W. B. Storey , Cytokinin-Induced Axillary Bud Sprouting In Macadamia. CMS Yearbook 1974.

  86. Mark D. Spiro,  Behzad Torabi and  Catharine N. Cornell, Cytokinins Induce Photomorphogenic Development in Dark-grown Gametophytes of Ceratopteris richardii. Plant Cell Physiol (2004) 45 (9): Pages 1252-1260.

  87. Elisabeth J Chapman and Mark Estelle, Cytokinin and auxin intersection in root meristems. Genome Biol. 2009; 10(2): Page 210.

  88. Eilon Shani,  Hadas Ben-Gera,  Sharona Shleizer-Burko,  Yogev Burko, David Weiss and  Naomi Ori1, Cytokinin Regulates Compound Leaf Development in Tomato. The Plant Cell Online, October 2010 vol. 22 no. 10: Pages 3206-3217.

  89. Ioio, R.D. et. al, A genetic Framework for the Control of Cell Division and Differentiation in the Root Meristem, Science 332, (2008): Pages 1380-1384.

  90. A. N. Binns: Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: Page 173 (1994).

  91. T. Schmülling, S. Schäfer, and G. Romanov: Physiol. Plant. 100: Page 505 (1997).

  92. S. D. Ray, GA, ABA, phenol interaction in the control of growth: Phenolic compounds as effective modulators of GA-ABA interaction in radish seedlings. BIOLOGIA PLANTARUM Volume 28, Number 5: Pages 361-369.

  93. Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X, Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway. Curr Biol. 2007 Oct 23;17(20): Pages 1784-90.

  94. Charles A. Leslie and Roger J. Romani, Inhibition of Ethylene Biosynthesis by Salicylic Acid. Plant Physiol. (1988) 88: Pages: 833-837.

  95. Hammerschmidt , R. & Smith - Becker , J. A. ( 1999 ) The role of salicylic acid in disease resistance. Induced Plant Defenses against Pathogens and Herbivores: Biochemistry, Ecology, and Agriculture (eds. A.A.
    Agrawal, S. Tuzun & E. Bent), Pages. 37-53. The American Phytopathological Society Press, St. Paul.

  96. Clouse, SD; Sasse, JM. (1998). "Brassinosteroids: Essential regulators of plant growth and development". Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: Pages 427–51.

  97. Li, JM; Chory, J. (1997). "A putative leucine rich repeat receptor kinase involved in brassinosteroid signal transduction". Cell 90 (5): Pages 929–38.

  98. Shuichi Iwahori, Shigeto Tominaga and Shinichi Higuchi, Retardation of abscission of citrus leaf and fruitlet explants by brassinolide, PLANT GROWTH REGULATION Volume 9, Number 2: Pages 119-125.

  99. Takahito Nomura, Masayoshi Nakayama, James B. Reid, Yasutomo Takeuchi, and Takao Yokota, Blockage of Brassinosteroid Biosynthesis and Sensitivity Causes Dwarfism in Garden Pea. Plant Physiol. ( 1 997) 1 1 3 : Pages 31-37.

  100.   Caño-Delgado, A; Yin, Y; Yu, C; Vafeados, D; Mora-Garcia, S; Cheng, JC; Nam, KH; Li, J et al. (2004). "BRL1 and BRL3 are novel brassinosteroid receptors that function in vascular differentiation in Arabidopsis". Development (Cambridge, England) 131 (21): Pages 5341–51.

  101.  Leubner-Metzger G. Brassinosteroids and gibberellins promote tobacco seed germination by distinct pathways.  Planta. 2001 Sep;213(5):758-63.

  102.  S. D. Clouse,  M. Langford and  T. C. McMorris, A Brassinosteroid-Insensitive Mutant in Arabidopsis thaliana Exhibits Multiple Defects in Growth and Development. Plant Physiology July 1996, vol. 111 no. 3: Pages 671-678.

  103.  Nemhauser, Jennifer L.; Mockler, Todd C.; Chory, Joanne (2004). "Interdependency of Brassinosteroid and Auxin Signaling in Arabidopsis". PLoS Biology 2 (9): e258.  

  104.   Richard N. Arteca* and Jeannette M. Arteca, Effects of brassinosteroid, auxin, and cytokinin on ethylene production in Arabidopsis thaliana plants. J Exp Bot. 2008 August; 59(11): 3019–3026.

  105.  Juan Antonio López-Ráez and Harro Bouwmeester, Fine-tuning regulation of strigolactone biosynthesis under phosphate starvation. Plant Signal Behav. 2008 November; 3(11): Pages 963–965.  

  106.  Alice Hayward, Petra Stirnberg, Christine Beveridge, and Ottoline Leyser,  Interactions between Auxin and Strigolactone in Shoot Branching Control1,[C],[OA], Plant Physiology, September 2009 vol. 151no. 1: Pages 400-412.

  107.   Victoria Gomez-Roldan, Soraya Fermas, Philip B. Brewer, Virginie Puech-Pagès, Elizabeth A. Dun, Jean-Paul Pillot, Fabien Letisse, Radoslava Matusova, Saida Danoun, Jean-Charles Portais, Harro Bouwmeester, Guillaume Bécard, Christine A. Beveridge, Catherine Rameau & Soizic F. Rochange, Strigolactone inhibition of shoot branching. Nature, 11 September 2008, 455: Pages189-194 

  108.  Einav Mayzlish-Gati1 Sivarama P. LekKala1 Nathalie Resnick Smadar Wininger, Chaitali Bhattacharya1 J. Hugo Lemcoff Yoram Kapulnik and  Hinanit Koltai1, Strigolactones are positive regulators of light-harvesting genes in tomato.  J. Exp. Bot. (2010) 61 (11): Pages 3129-3136.

  109.  Yoram Kapulnik Natalie Resnick Einav Mayzlish-Gati Yulia Kaplan, Smadar Wininger Joseph Hershenhorn and  Hinanit Koltai1, Strigolactones interact with ethylene and auxin in regulating root-hair elongation in Arabidopsis.  J. Exp. Bot. (2011), doi: 10.1093/jxb/erq464.

  110.  Wouter Kohlen Tatsiana Charnikhova Qing Liu Ralph Bours, Malgorzata A. Domagalska Sebastien Beguerie Francel Verstappen, Ottoline Leyser Harro Bouwmeester and  Carolien Ruyter-Spira, Strigolactones Are Transported through the Xylem and Play a Key Role in Shoot Architectural Response to Phosphate Deficiency in Nonarbuscular Mycorrhizal Host Arabidopsis. Plant Physiology February 2011 vol. 155 no. 2: Pages 974-987.

  111.  Foo E, Turnbull CGN, Beveridge CA (2001) Long-distance signaling and the control of branching in the rms1 mutant of pea. Plant Physiol 12: Pages 203–209.

  112.  Brewer PB, Dun EA, Ferguson BJ, Rameau C, Beveridge CA (2009) Strigolactone acts downstream of auxin to regulate bud outgrowth in pea and Arabidopsis. Plant Physiol 150: Pages 482–493.

  113.  FRENCH, R. C. & BEEVERS, H . (1953). Respiratory and growth responses induced by growth regulators and allied compounds. Am. J. Bot., 40: Page 660. 


  115.  SKOOG F, CO MILLER 1957 Chemical regulation ofgrowth and organ formation in plant tissues cultured in vitro. In The Biological Action of Growth Substances. Symposium of Society of Experimental Biology XI: Pages 118-19.